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Relative-distance Machian theories

Macn’s principle, in essence, requires that the dynamical law
of the Universe be expressed ultimately in terms only of the
relative distances between the observable entities in the universe.
Here I propose a general framework for constructing theories
that satisfy this postulate automatically. A simple model shows
how the Newtonian world picture can be satisfactorily ‘Machian-
ised.” In principle, one could attempt to Machianise the post-
1905 world picture along similar lines.

The key Kinematic concept is the relative configuration
space (RCS) of the Universe. If, as in Newtonian theory, the
Universe is assumed to consist of N particles in a fixed three-
dimensional Euclidean space, the points of the RCS (the
Newtonian RCS) are all the distinct relative configurations of
these N particles. Many other RCSs are conceivable. For
example, the points of an RCS could be all distinct three-
geometries, and the RCS would then be the ‘superspace’
familiar in general relativity’. The general framework is not,
therefore, tied to pre-1905 physics.

A kinematical history of the Universe (or RCS curve) is
any continuous curve in the RCS. On any such curve, each point
defines an ‘instant of time’ in the given history; the unfolding of
time is but the fact of the universe’s moving along some RCS
curve (Leibniz’s concept of time). Note that time — and there-
fore the possibility of defining relative velocities — is derived
from within the RCS; note also the emphasis that is placed
on the motion of the Universe as a whole.

If the dynamical law of the Universe is expressed solely in
terms of elements taken from within the RCS, the theory
must be Machian by construction. This is the general criterion
that a Machian dynamics must satisfy. One possibility of
realising such a dynamics is to seek a variational principle that
contains only allowed kinematical elements and makes actually
realised RCS curves extremal compared with neighbouring
kinematically allowed curves. The initial conditions are specified
by the direction of the RCS curve at a given point of the RCS.
Boundary conditions do not arise.

In the case of the Newtonian RCS, space will play a geo-
metrical but not dynamical role (in contrast to Newtonian
mechanics). In a theory in which three-geometries constitute
the points of the RCS, a Machian dynamics would automatically
entail a variable three-geometry that unfolds in accordance with
a Machian law. In this case, it would be more appropriate to
speak of a relative-configuration (rather than relative-distance)
Machian theory. Such an approach is not identical to the
superspace approach to general relativity, in which it is assumed
a priori that a sequence of three-geometries ‘stacks’ into a four-
dimensional Riemannian space!. 1 see here the extraneous
clement (not taken from within the RCS) responsible for
general relativity’s failure to give an entirely satisfactory
account of inertia.

It seems difficult to reconcile the universal time defined here
with the local time of special relativity. But the flat-space
approach to general relativity?3 has shown how the a priori
assumed kinematical elements of a theory can, in fact, be
rendered inobservable when a dynamical law of gravitation is
imposed on a prescribed kinematical structure. In principle,
something similar could happen here — a dynamical law, perhaps
in conjunction with a particular class of plausible initial
conditions, could lead to a dynamics in which only a local time
can in fact be observed. The present approach reverses the
priorities that Einstein had in mind when constructing general
relativity. Instead of requiring special relativity to hold in the
small under all conceivable circumstances in all possible uni-
verses (and hoping that this can somehow be reconciled with
Mach’s principle via the equivalence principle), the aim here
is to construct theories that are Machian of necessity and

then to see if any of these give rise to special relativity in the
small in universes like ours.

In the case of a Newtoniah RCS with N point particles
i =1,..., N of mass m; (an intrinsic number associated with
each particle; m; = M), the obvious allowed kinematical
elements are the relative distances #;(A) between all pairs ; and j
of particles, and their derivatives r;; = drjj/dA with respect
to an arbitrary time parameter A along the RCS curve. The
simplest nontrivial gravito-inertial dynamics is then defined by
the Lagrange function

L = yI' (1)
where
I =(X mmy»)"*,i=1,..,N
i<j
y =X m,mj/r,-j
i<j

Equation (1) has a product form to ensure that LdA is inde-
pendent of the time parameter (a sum like (v + I')dA would
not be A-independent).

The equations of motion deduced from (1) in three dimen-
sions are too complicated to be readily comprehensible. Simple
equations are obtained in one dimension by introducing
Cartesian coordinates, whose origin may execute any suitably
continuous motion whatsoever relative to the particles in their
one-dimensional universe. The resulting Euler-Lagrange equa-
tions will describe the uniquely determined relative motion
(which is all that is observable) in terms of the arbitrarily
chosen coordinate system. Let x (1) be the coordinate of particle
i; then L becomes

L = y[Z mmj(x;* — 2x;%; + x;2)] V2 (2)
i<j
and the Euler-Lagrange equations
% (0L/0x¢) = OL/0ox;
are
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We can now specialise both A, taking
dr = ds = ( Z mmdr®;pY2, Qe I=1,

i<j
and the coordinate syst{:m, taking it such that
YmixX; = 0 (here dA = ds)
In these special frames, which are distinguished by the uniquely
determined relative motion, the equations of motion simplify to

dy
axi
If only a few particles are present in the Universe, equations (3)
clearly lead to motion that is very different from the Newtonian.
On the other hand, in an environment broadly similar to ours
(very many stars distributed uniformly over a large region), vy
will be effectively constant and s will be indistinguishable from
Newtonian time. Then equation (3) becomes
my dxg/dt = (1/M y)3 y/0x¢ (C)]
where v = 1/M v is a ‘gravitational constant’ that is determined
by the actual distribution of matter in the Universe. A different
model (in preparation) turns out to have more interesting
properties, so I shall not attempt to estimate y here. In the
neighbourhood of the Sun, say, the motion predicted by equa-
tion (4) is essentially indistinguishable from the Newtonian if ¥
has the correct value. '
This model is, I believe, interesting for several reasons.
First, it explains inertia (resistance of a body to rectilinear
acceleration relative to the remaining bodies in the Universe)
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solely in terms of relative distances and relative velocities and
demonstrates that a complete dynamics can be expressed in
such terms. For the discussion of how Mach’s principle should
be implemented, this may be important, for Einstein, in parti-
cular, doubted whether the Newtonian world picture could be
Machianised in this manner?. It is particularly satisfying that
preferred frames (the inertial frames of Newtonian theory)
are distinguished by a motion whose dynamics is expressible
solely in terms of relative distances.

Second, although two features of Newtonian gravitation are
introduced a priori in equation (1) — all gravitational ‘charges’
are of the same sign and are proportional to the inertial ‘masses’
— the theory itself determines the actual strength of gravity
(because a coupling constant cannot enter the product L)
which must be attractive. (In the model in preparation, gravity
and inertia are truly subsumed into a single mechanism and
the correct order of magnitude of the gravitational constant is
predicted.) \

Third, whereas Newtonian theory and general relativity
provide equations of motion for essentially inobservable
quantities in the limit of universes containing only a few
particles, no such problem arises in the present approach.
If there is just one particle in the Universe, the RCS does not
even exist, so there is no theory at all. If there are two particles,
the RCS is the positive half axis, but no equation of motion
can be formulated because equation (1) becomes trivial; the
particles may approach or recede but no meaning can be
attached to the rate at which this happens. Nontrivial dynamics
first becomes possible when there are three particles, and even
then the motion is quite unlike the Newtonian. Many particles
in an isotropic background are required to build up the inertial
forces as we know them in this universe.

Other forces could b€ included readily by adding a term
linear in the rijs to L (gyroscopic-type forces) or multiplying L
by another factor ® = ®(r;;). Indeed, in an attempt to include
electrostatics, take L’ = ®YI, where @ = I ejj/r,

. i<
withey = 1fori =1,...N/2ande; = — 1fori = N2 + 1,

. . N. Then the equations of motion corresponding to the
conditions under which equation (4) hold are
mq dx;/dt = (1/M¥) 0¥/ox; + (1/M®D) o®/ox;’ 5)
As L’ is a product, the relative strength of the new forces is
again determined by the theory for each particular universe.
In fact, if the particles in this case have equal masses and
are distributed more or less uniformly, then | ¥/® |~ N,
because all the ~N? terms in ¥ are positive, whereas there
are just N more negative than positive terms in @®. Thus, the
electrostatic forces in equation (5) are ~ N times stronger
than the gravitational forces and like charges repel and oppo-
sites attract (provided ® < 0; I do not know whether distribu-
tions could exist for which ® > 0). As it happens there are
N ~ 10% baryons in the observable Universe®, whereas we
require a strength ratio ~ 10%, but the fact that we get the
square of the right answer is perhaps an indication that product
Lagrangians, which arise naturally (if not uniquely) in such a
global approach to motion, could perhaps provide an explana-
tion for the famous cosmic coincidences®.

If the general framework is in fact the right approach to the
problem of inertia, radical changes in theoretical physics are
almost certainly necessary, and it is unlikely that the simp_.
model presented here could bear any more resemblance to an
ultimately successful theory than Bohr’s original model of the
hydrogen atom does to modern quantum field theory.
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