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1 Project Abstract

My application is for two mutually reinforcing projects. The first is to show
that the structure of space essentially determines the dynamics of space,
which in turn determines the physcial properties of time. This will be done
by completing my program for the relational derivation of classical dynamics
from the fewest possible axioms. In particular, only scale-invariant (angle-
determining) structure of space is presupposed. Much of the structure of
spacetime usually taken as fundamental is thereby shown to be emergent.
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This is likely to be important in quantum gravity, in which emergent struc-
ture of the classical theory should play no fundamental role. My second
project is to write a monograph presenting a unifying vision of the rela-
tional foundations of physics. I am confident that I do now have a clear
overview of relationalism in classical dynamics. The part played by scale
invariance – the relativity of size and its relation to time – was the last piece
of the picture to fall into place. A monograph that presents this picture will
have value in itself and be a resource for researchers wishing to apply the
insights of relational dynamics in quantum gravity.

2 Summary for Laypeople

My research project addresses the most fundamental questions in dynamics:
What is space? What is time? What is motion? They were hotly debated
by Newton and Leibniz three centuries ago and still have central importance
because they have to be reconsidered with each new advance in our under-
standing of nature. They are critical for the greatest outstanding problem in
physics: the unification of Einstein’s general theory of relativity with quan-
tum mechanics in order to create a quantum theory of the universe. Such
a theory is needed to explain why the universe exists in the form it does,
why it seems to have been created in a big bang, and why “never resting
time” seems always to flow forward from past to future through an elusive
present. For many years, I have studied the foundations of dynamics and
have shown that Einstein’s theory of relativity answers the questions as to
the nature of space, time, and motion in a manner that has not hitherto
been fully appreciated. My project has two aims: to bring this study to
its conclusion and to summarize all this work in a book written to help the
creation of the quantum theory of the universe.

3 Introduction and Overview

The main aim of my research project is to show that the structure of space
essentially determines the dynamics of space, which in turn determines the
physcial properties of time, i.e., the nature of time. This will be done by
completing my program for the Machian (relational) derivation of the clas-
sical dynamics of the universe from the fewest possible axioms. These are:
1) minimal assumptions about the structure of space and the framework it
provides for the description of matter; 2) specification of what initial data
should determine dynamical evolution; 3) the basic mechanism (best match-
ing) through which this is realized.

I see this project, which should bring to completion my current FQX-
funded research, as important preparation for the creation of a corresponding
quantum theory, the unfulfilled dream of physicists for at least half a century.
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The main difficulty here has been reconciliation of the foundational axioms
of general relativity and quantum theory. They are incompatible, above all
in treating time in radically different ways. For several decades, I have been
developing a relational interpretation of general relativity inspired by Mach’s
critique of Newton’s concepts of absolute space and time. Although Mach’s
principle was the main stimulus to Einstein’s creation of general relativity,
his indirect approach to the task has been the source of much confusion
about the essential dynamical structure of his great theory. Einstein himself
even disowned Mach’s principle at the end of his life, declaring that it had
been made obsolete by the creation of field theory.

In fact, the work of my collaborators and myself [1, 2, 3, 4, 5] has shown
that Einstein was quite wrong to draw this conclusion, which was based on
an incomplete understanding of the true nature of Mach’s profound critique
[6]. If one considers properly how the fundamental principles of dynamics
need to be formulated in order to do justice to the critique, one finds that
general relativity is in fact a perfectly constructed Machian theory. How-
ever, this is hidden in a subtle manner within the mathematical formalism
that Einstein took over ‘ready made’ in the form of the tensor calculus de-
veloped by Christoffel, Levi-Civita, and Ricci. When that is ‘unpacked’ and
interpreted in a truly relational manner, general relativity appears in a very
different light. Moreover, its structure no longer looks so incompatible with
the most basic features of quantum theory: the common foundation of both
theories is one and the same relational configuration space.

Before describing the specific issues that I wish to research with my
collaborators in a new grant, I need to provide the necessary background,
and will therefore outline the major change that the relational interpreta-
tion brings about. This will help to identify the few outstanding issues that
need to be resolved before this program can be regarded as completed. This
background will also serve to explain why I wish to devote half of the funds
for which I am applying to the writing of a book that will give a complete
account of the relational approach to classical and quantum mechanics. It
will in effect be the second volume of my study of the great foundational
question in dynamics: is motion absolute or relative? The first volume ap-
peared in 1989 as The Discovery of Dynamics [7] and covered the period
up to Newton’s discovery of the laws of motion. My proposed second vol-
ume – an outline of its contents is given after my proposed research topics
have been listed – will be less historical and much more concerned with
cutting-edge research. It will be a complete reformulation of dynamics on a
relational basis, as was already called for by Leibniz and later Mach. The
demonstration that, without realizing it, Einstein in fact achieved precisely
what they wanted is surely of great importance for the next major advance:
quantum gravity.
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3.1 General Relativity in the Spacetime Formulation

The most fundamental premise on which general relativity is based is the
Minkowskian nature of spacetime in the infinitely small. Time and space
are treated as almost identical in nature: distance is extension in a spacelike
direction, duration is extension in a timelike direction. Only the opposite
sign of the metric distinguishes the time dimension from space. Moreover,
distance and duration are ontological: they exist in the world. Minkowski
spacetime also has inbuilt inertial frames of reference, since test particles
are forced to move in it along straight lines. To summarize, local inertial
frames of reference, local proper distance and local proper time all belong
to the fundamental kinematic structure of spacetime even though it is in
general curved in the large. All possible spacetimes have these kinematic
elements. The physically realized spacetimes, i.e., those that satisfy Ein-
stein’s field equations, are selected among the set of all possible spacetimes
by an extremal property: the variation of

∫

d4x
√
gR, (1)

where R is the four-dimensional scalar curvature and g is the determinant of
the 4-metric gµν , must vanish for all variations of the metric in any region
of spacetime with fixed values of the metric on the boundaries of the region.

This way of deriving Einsteinian spacetimes makes it appear that local
inertial frames, local proper time, and local proper distance really do exist
in the world, certainly at the classical level. There is therefore a natural
presumption that they should be ‘taken over’ into the quantum domain. Al-
ready more than 50 years ago this assumption had to be revised when Dirac
and Arnowitt, Deser, and Misner (ADM) cast general relativity into Hamil-
tonian form as a first step to its canonical quantization. As Wheeler empha-
sized, the first ‘painful’ lesson that had to be learned is that in Hamiltonian
general relativity it is not the four-metric gµν of spacetime that evolves but
the three-metric g ij of space. Dirac was so struck by this discovery, which he
welcomed for the simplification it introduced in relativistic dynamics, that
he commented “This result has led me to doubt how fundamental the four-
dimensional requirement in physics is.” A few years later, DeWitt made the
equally remarkable discovery that the canonical quantum theory of a closed
unverse is static. Time disappears entirely.

3.2 My Long-Term Research Program

These major developments in quantum gravity explain how my own research
program began. In 1963 I chanced to read Dirac’s sentence in a newspaper
article. At the same time I became acquainted with Mach’s writings and
was also studying the papers in which Einstein created general relativity
in order to implement Mach’s principle. Surprised by Einstein’s failure to
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attack the Machian proposal directly, I resolved to go back to ‘Machian
first principles’ in order to derive a fully relational theory ab initio. In
such a theory, duration should be derived from change,1 position should be
defined relative to the universe at large, and only relative sizes within the
universe should have objective meaning (if all scales were doubled overnight,
no change could be observed). Of these three principles, the axioms of a
truly relational theory, Einstein had consciously worked to implement just
the second, the relativity of position and then, as noted, only indirectly.

I formulated a basic framework in which these axioms could be im-
plemented in 1974 [9]. This led to an extended collaboration with Bruno
Bertotti and our paper in 1982 [1], in which we had important help from
Karel Kuchař. This paper, which has become reasonably well known in the
relativity and quantum gravity communities, developed a universal frame-
work in which one can automatically construct theories meeting the three
essential relational requirements listed above. It is important that the rela-
tivity of duration is achieved in a manner that is quite different from that
used to implement relativity of position and size, which is done by a process
called best matching (for the basic idea, see [10]). In contrast, time is elim-
inated entirely from the basic kinematical structure of the theory, which is
formulated as a geodesic theory on configuration space.

The paper [1] showed that in the case of a closed universe general rel-
ativity fully meets the requirements of relativity of duration and position.
It also showed that the discoveries of Dirac, ADM, and DeWitt were simple
direct consequences of these relational aspects of general relativity, which
had long remained hidden in its original spacetime formulation. In partic-
ular, the disappearance of time in canonical quantum gravity discovered by
DeWitt is a direct consequence of the relativity of duration. I also became
convinced that the quantum implications of the relational structure of gen-
eral relativity were more far reaching than had hitherto been appreciated
and could perhaps explain the arrow of time and lead to a complete expla-
nation of our sense of a passage of time in an ontologically timeless universe.
I eventually wrote about this in my book The End of Time [11].

However, it now seems to me that the quantum implications are still
more significant. This has to do with the relativity of size, which had not
been further explored in the paper with Bertotti [1]. In 1999 I showed how
this could be done for particles in Euclidean space [12], and the extension to
dynamical geometry was then accomplished, initially by Niall Ó Murchadha
and myself [13] and then in more detail by us with Edward Anderson, Bren-
dan Foster, and Bryan Kelleher [3, 4]. The background to this work will
be discussed in the next subsection, but I will conclude this subsection by

1“It is utterly beyond our power to measure the changes of things by time. Quite the
contrary, time is an abstraction at which we arrive by means of the changes of things” [8],
p. 273. Einstein explicitly introduced relativity of simultaneity but not of duration.

5



noting a surprising bye product of the work on scale invariance. It tran-
spired in the initial stages of this work that, if implemented locally, the
Machian requirement that duration be derived from change is a immensely
powerful principle and leads, in conjunction with relativity of position and a
natural simplicity assumption, very directly to, first, general relativity, then
special relativity, and then gauge theory [2]. The historical sequence of the
discovery of these theories is reversed and seen in a very different light.

3.3 Weyl’s Critique of Riemannian Geometry

Equally surprising, if not more so, were the insights that emerged from the
relativity of size, the third axiom of relational dynamics. In the context
of dynamical geometry, this means starting from the assumption that only
angles and length ratios, and not lengths as such, play any dynamical role:
scale has no more physical significance than coordinates in standard differ-
ential geometry. To implement this basic assumption, one seeks a theory
that is conformally covariant.2 The first attempt to create such a theory
was made over 90 years ago by Weyl, who tried to dispense with one of
the assumptions made by Riemann in 1854 when he created Riemannian
geometry, namely that widely separated measuring rods can have the same
physical length. Weyl argued that such global comparison of lengths is in-
compatible with the consistent development of geometry based on a purely
local infinitesimal basis. To rectify the perceived defect, he assumed that
the four-dimensional metric gµν(x, t) is determined only up to a scale factor
φ(x, t) and thus determines only angles but not lengths in spacetime. He
introduced a further field, a four-vector ψµ(x, t), to determine infinitesimal
lengths. Just as the four-metric gµν and ψµ transform under coordinate
transformations, both transform as well under scale transformations:

gµν → φgµν , ψµ → ψµ +
∂φ

∂xµ
. (2)

Specification of some gµν(x, t) then determines lengths only in a partic-
ular ‘gauge’,3 which is changed by a transformation (2). Because the field
ψµ transforms in the same way as the Maxwell vector potential Aµ, Weyl
initially believed that he had succeeded in unifying gravitation and electro-
magnetism, but this attempt, which involved finding field equations invari-
ant simultaneously under coordinate and gauge transformations, failed. The
theory was nevertheless greatly admired for its critcal analysis of the prob-
lem of length determination. Moreover, after a small but significant change
of the gauge group (leading from a real to a complex scale factor), Weyl’s

2In differential geometry, conformal transformations change the scale of the metric,
and in a conformally covariant theory scale cannot play a dynamical role.

3The notion and terminology of a gauge transformation (Umeichung) were introduced
by Weyl in his 1918 paper.
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idea became the basis of modern gauge theory. Of more relevance for the
present research proposal, the original idea has never ceased to fascinate,
and many researchers, Dirac included, have attempted to implement the
idea in some form or other. Weyl’s critique of Riemannian geometry clearly
has great significance for the relational program and matches Leibniz and
Mach’s critique of Newton’s absolute space.

3.4 Alternative Implementation of Weyl’s Idea

It is in this light that the line of research begun by Ó Murchadha and
myself in 1999 [13] is to be seen. It took into account the lessons learned
in the early work on canonical quantum gravity and the complementary
research of Bertotti and myself [1]. As already noted, this had above all
demonstrated two things: first, the dynamical object in geometrodynamics
is not the four-dimensional metric gµν but the three-dimensional metric g ij;
second, not all structure that appears in the spacetime form of Einstein’s
theory is necessarily ontological, it may be emergent. Our basic assumption
was therefore this: geometrodynamics is to be formulated in terms of the
three-dimensional metric of space g ij , but only its angle-determining part is
to be regarded as physical. Its scale factor, which determines local proper
distance, is to emerge from the relational form of its dynamics just as local
inertial frames of reference and local proper time arose in the earlier work
from the relativity of position and duration.

Thus, our inspiration was the same as Weyl’s but we attempted to im-
plement it with significantly less fundamental structure; we dispensed en-
tirely with Weyl’s additional vector field ψµ and took only the conformal
(angle-determining) spatial part of the spatial metric g ij . We also signifi-
cantly modified the invariance requirements imposed in Einstein’s original
spacetime formulation of general relativity and in Weyl’s attempted gener-
alization. Einstein required four-dimensional general covariance (involving
four arbitrary functions of spacetime in the transformation laws, or space-
time diffeomorphism invariance), Weyl required not only that but also four-
dimensional conformal invariance (a fifth arbitrary function). In contrast,
we retained three-dimensional diffeomorphism invariance, which implements
relativity of position, and replaced Einstein’s freedom in the definition of si-
multaneity (foliation invariance) by three-dimensional conformal invariance,
which ensures (local) relativity of size. Thus, with Einstein we required in-
variance with respect to four arbitrary functions but swapped one of them
(foliation invariance) for three-dimensional conformal invariance.

Ó Murchadha succeeded in implementing these principles in a remark-
able manner that generalizes standard gauge theory by relaxing some of the
boundary conditions imposed on the variation.4 The details are given in

4If one requires stationarity of an action subject to weaker restrictions on the variation
(as in the free-end-point variation employed in [13, 3, 4]), then stronger restrictions on
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[13, 3, 4]. Much of the research that I have been involved in during the sec-
ond year of my current large grant has been devoted to clarifying and taking
further this work. Several papers by my collaborators (Ó Murchadha, Sean
Gryb, Henrique Gomes, Tim Koslowski) and myself are currently nearing
completion. I shall not attempt to describe everything in detail, but merely
highlight the most interesting and promising results.

4 Results Achieved with my Current Grant

First and foremost, the ontology of general relativity (for a closed universe
at least) is radically changed. It becomes a theory of the dynamical evolu-
tion of the shape of space. The physical degrees of freedom at each space
point are just the two angle-determining (conformal) parts of the three-
metric g ij , which describe the local shape of space. The corresponding
configuration space is conformal superspace (CS), the space of all conformal
three-geometries on a closed manifold M . We require that in a relational
theory of conformal geometry a point and a tangent vector in CS should
determine a unique evolution in CS. This is achieved in a theory that im-
plements relativity of position and size by appropriate best matching. One
of the issues that we are currently researching (see below) is how many
theories exist which meet the above ‘point-and-tangent-vector’ requirement.
However, it has already been established that general relativity is such a
theory. In principle, this was already shown in [4], but the recent research
has significantly strengthened the derivation, on which Ó Murchadha and I
have just posted a paper [5].

We are also gaining a deeper understanding of the manner in which rela-
tivity of simultaneity (foliation invariance) can be ‘swapped’ for relativity of
size (conformal invariance). We are beginning to see how the interpretation
of general relativity as the dynamics of shape casts light on its deep dynam-
ical structure. Ever since the work of York and Ó Murchadha 40 years ago,
the importance of conformal techniques in the solution of the initial-value
problem of general relativity has been well known. However, that work, done
at a time when the primacy of foliation invariance (relativity of simultane-
ity) was unchallenged, was not felt to be relevant to dynamical evolution.
Our work is beginning to cast doubt on that assumption, long felt to be the
rock on which general relativity is founded.

In this connection, it is worth noting that our approach based on rel-
ativity of size is not the only one that questions the primacy of foliation
invariance. For several years, researchers in quantum gravity have expected
that the existence of the Planck length as a fundamental unit on a par with
the speed of light will lead to a breakdown of strict Lorentz invariance at
the Planck length (doubly special relativity). More recently, Hořava has ar-

the possible solutions are obtained. This is the key to our new results.
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gued that foliation invariance is very strongly broken in the ultraviolet limit
of perturbative quantum gravity. His approach, which has attracted huge
interest, postulates in a rather ad hoc manner a distinguished foliation in
spacetime. As will be noted in the main text, one of the most interesting
results of our conformal approach is that it leads with iron necessity to a
distinguished foliation. It follows from a fundamental first principle.

The possibility that relativity of simultaneity is not a true first principle
for general relativity and needs to be replaced at the deepest level by rela-
tivity of size is intimately related to the manner in which Mach’s dictum on
the derivation of time from change (footnote 1) is implemented. As this is
an integral part of the demonstration that the structure of space essentially
determines its dynamics, which in turn determines the properties of time,
the following subsections explain how this happens.

4.1 The Derivation of Time with Euclidean Geometry

Time emerges from timeless dynamics in a more or less universal manner, but
the details depend crucially on the assumptions made about the structure
of space. This will be outlined in this and the next two subsections for
the progressively more interesting and far reaching cases of 1) Euclidean, 2)
Riemannian, and 3) conformal geometry.

In my essay The Nature of Time [14], which won the first juried prize
in the inaugural FQX essay competition, I showed how duration and the
theory of clocks emerge from the timeless reparametrization-invariant Jacobi
principle for the orbit of the Newtonian N -body problem:

δAJ = 0, AJ = 2

∫

dλ

√

(E − V )
∑

i

mi

2
x′

i · x
′

i, x′

i =
dxi

dλ
, (3)

where λ is an arbitrary monotonic parameter that labels the points of the
orbit, E is the constant total energy, and V is the potential energy of the
system. The two key features of (3) are: 1) the particle positions are the
vectors xi in Euclidean space, which will determine the nature of the emer-
gent time; 2) the square root of the integrand, which makes the Lagrangian
a metric on configuration space Q, the geodesics of which are the Newto-
nian orbits in Q with total energy E. The square-root structure ensures
that there is no time in the kinematic foundations of the theory. Time only
emerges as a parameter that simplifies the equation of the timeless geodesics
that follows from (3) and is

d

dλ





√

(E − V )

T
mi

dxi

dλ



 = −

√

T

(E − V )

∂V

∂xi

, (4)

where T is the cofactor of E − V in (3). It is obvious that (4) is greatly
simplified by choosing the arbitrary label λ such that always T = C(E −
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V ), where the constant C sets the unit of the distinguished label λ, which
then (since (4) then becomes Newton’s second law) emerges as Newtonian
time derived from change as Mach required. The explicit expression for the
increment δt of this emergent time is

δt =

√

∑

imiδxi · δxi

2(E − V )
. (5)

It is shown in [14] that mechanical clocks will only march in step – and
hence have any utility – if they are constructed in such a way that they
measure this emergent time defined by (5). Jacobi’s principle, properly
interpreted for a closed system, provides the complete theory of Newtonian
time. Moreover, the form of the expression (5) depends crucially on the
properties of Euclidean space, which dictate the appearance of the scalar
product in the numerator and the distance dependence that appears in V .
In this sense, the nature of time is determined in dynamics by the structure
of space.

4.2 The Derivation of Time with Riemannian Geometry

In general relativity, the situation is closely analogous but much more so-
phisticated. This is largely because space no longer has a Euclidean but
rather the much richer Riemannian structure. The nature of the emergent
time is correspondingly richer.

Vacuum general relativity (without cosmological constant and for a spa-
tially closed universe) can be derived from the Baierlein–Sharp–Wheeler
action [15]

ABSW =

∫

dλ

∫

d3x
√

gRG ijkl(g′ij − ξ(i;j))(g
′

kl − ξ(k;l)), g
′

ij :=
dg ij

dλ
, (6)

where g is the determinant of the three-metric g ij , R is the three-dimensional
scalar curvature, G ijkl is the DeWitt supermetric, and the three-vector field
ξi in the Killing form ξ(i;j) is the generator of three-diffeomorphisms used
in best matching to implement relativity of position in geometrodynamics.
The BSW action (6) is defined on Riem, the space of Riemannian three-
metrics on a closed three-manifold M . Variation with respect to ξi leads
to the ADM momentum constraint. The parameter λ is arbitrary and in
conjunction with the square root ensures that the kinematic foundation of
the theory is timeless.

It is important to note that the square root is taken locally, i.e., a
quadratic expression is formed at each space point and then its square root
is integrated over space.5 This has very significant consequences.

5For this reason, the BSW action, unlike the Jacobi action, cannot be regarded as a
true geodesic principle though, as we shall see, it has the same effect. I should also express
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First, the local square root means that the equations of motion that
follow from (6), given in full in [2], simplify by analogy with what happens
for Jacobi’s principle if the value of λ is chosen locally such that

N =

√

T

4R
= 1, (7)

where T is the cofactor of
√
gR in (6). This then leads to an explicit expres-

sion for an emergent local proper time. The richer structure of Riemannian
geometry as compared with Euclidean geometry therefore has the conse-
quence that its dynamics leads to a more subtle nature of time.

Second, because the square root is local, it leads to a primary quadratic
constraint

p ijp
ij −

1

2
p2 − gR = 0, p = g ijp

ij, (8)

which is just the ADM Hamiltonian constraint derived directly from explic-
itly relational principles. As Ó Murchadha noted, it is extremely difficult
to construct consistent theories of the form (6) with local square root. This
has the positive consequences found in [2] and noted at the end of Sec. (3.2).
In my view, they completely change the manner in which general relativity
is to be viewed. There is at the least a strong case for regarding it as a rela-
tional dynamical theory, not a spacetime theory. The relativity of duration,
implemented through the local square root, has numerous consequences and
leads to the emergence of local proper time by very close analogy with the
emergence of Newtonian time from the Jacobi action principle (3). The
presence of the Killing term ξ(i;j) in (6) implements relativity of position
and leads to the ADM momentum constraint. The fundamental dynamical
structure of general relativity is derived very directly, as explained in detail
in [2]. At this stage, we have relativity of both duration and simultaneity.

4.3 The Derivation of Time with Conformal Geometry

I now come to the most intriguing possibilities, which are opened up by
implementing relativity of size in a spatially closed universe. As shown in
[3, 4], this can be done by including in the BSW action (6) not only the
Killing term ξ(i;j), which implements relativity of position, but a further
term that implements relativity of size by best matching with respect to
either full conformal transformations of the three-metric g ij in accordance
with (the fourth power of ϕ is chosen for mathematical convenience)

g ij → ϕ4g ij , ϕ = ϕ(x, λ) > 0, (9)

my gratitude to Karel Kuchař for drawing my attention in 1980 to the local square root in
the BSW action and its relation to Jacobi’s principle. This feature had not been noted by
any other relativist; its has been crucial for all recent progress in the relational program.
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for such transformations that 1) are untrestricted or 2) preserve the total
volume of the universe. The first possibility leads to a theory that is very
similar to general relativity but in which no expansion of the universe is
possible, the second to general relativity in the constant-mean-(extrinsic)-
curvature (CMC) foliation that plays the key role in York’s solution of the
initial-value problem. The conformal best matching is implemented by vary-
ing ϕ by the free-end-point method (for details see [3, 4]) and, in contrast
to the diffeomorphism best matching, leads to not only a constraint but
also to a nontrivial consistency condition that ensures propagation of the
constraint. The constraint enforces the CMC condition on the initial hyper-
surface, while the consistency condition, which is a lapse-fixing condition,
ensures that this condition propagates.

These results are intriguing for two main reasons. First, a local scale
appears nowhere in the kinematic foundations of the theory in conformal
superspace but is forced to emerge as a distinguished scale in Riem by the
best matching. This already happens on the initial hypersurface and is in
strong contrast to the consequence of the diffeomorphism best matching,
which does not lead to distinguished coordinates on the initial hypersurface
but only in the propagation, for which Gaussian normal coordinates are
distinguished. Second, the CMC condition, which introduces a unique defi-
nition of simultaneity, is enforced dynamically by the variational principle.
Despite this, the effective theory that emerges at the classical level is iden-
tical to general relativity in its predictions. It may also be noted that there
are an infinity of solutions of general relativity for which there exists at least
a ‘slab’ of spacetime satisfying Einstein’s equations in the CMC foliation.
This follows from the very general applicability of York’s method for solving
the initial-value problem of general relativity in the CMC foliation and the
existence and uniqueness of the solution of the CMC lapse-fixing equation,
which ensures propagation of the condition in at least an open neighborhood
of the initial hypersurface. It may be mentioned that the CMC simultaneity
hypersurfaces in spacetime are analogous to soap bubbles in ordinary space
and therefore have extremal properties.

The reason for the difference between the diffeomorphism and conformal
constraints, which could have considerable significance for quantum gravity
and leads to these two striking features, comes from a key property of what
I call the ‘bare’ BSW action:

AbareBSW =

∫

dλ

∫

d3x
√

gRG ijklg′ijg
′

kl, (10)

which is simply the BSW action without the Killing term that implements
diffeomorphism best matching. Now this action is invariant under identical
diffeomorphisms made at each λ: it is globally gauge invariant, essentially
because R is a scalar under diffeomorphisms. However, because gR is not
a conformal scalar, the action (10) is not globally conformally invariant. In
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standard gauge theory with fixed-end-point variation, this would be regarded
as a fatal defect but with the free-end-point variation that is appropriate
for relational theories a perfectly consistent theory with very interesting
properties arises. It is general relativity in the CMC foliation with the two
angle-determing conformal degrees of freedom unambiguously identified as
the true degrees of freedom of the theory.

One can summarize the situation as follows. One starts with far less
kinematic structure than the standard approach; the assumptions about
what exists are reduced to the absolute minimum. There is still a ‘struc-
tured something’ that evolves, but much of what is taken to exist in the
standard view is not really present at all. In fact, all that exists in the
classical theory is a sequence of conformal three-geometries. However, the
manner in which the sequence is determined by best matching from specifi-
cation of a point and tangent vector in CS makes it possible to embed the
sequence of conformal three-geometries into an Einsteinian spacetime in the
CMC foliation. Local inertial frames of reference, local proper distance, and
local proper time are all emergent. In the spacetime representation, this
‘additional structure’ is assumed in to have ontological status but is in fact
nomological in nature, i.e., it is an expression of the fundamental dynamical
law of the universe and not part of its ‘substance’ at all.

This is very relevant to basic questions in quantum gravity. As a first ex-
ample, serious attempts were made in the past to separate out from the full
set of components of the four-metric gµν two true degrees of freedom from
a ‘residual structure’ constituted by the remining components. This resid-
ual structure would then be a spatiotemporal framework in which the true
degrees of freedom should evolve. But if, as the relational work strongly sug-
gests, the ‘residual framework’ is not there at all, we must think about these
things differently. The quantum universe will not evolve in any framework
but simply be. As another example, the widespread assumption that space
becomes discrete at the Planck length and may only exist in Planck-scale
‘pieces’ is perhaps natural if the true ontological basis of classical general
relativity is Riemannian geometry. But if it is conformal geometry, that
assumption becomes questionable. As one last example, the causal set pro-
gram, while seeking, like the relational program, to identify the minimal
structure needed to describe the quantum universe, looks to extract it from
the four-dimensional causal structure of spacetime. But in the relational
approach, this too is emergent.

Of course, I cannot claim that the relational approach is definitely cor-
rect. That would be rash. However, it does have very plausible first prin-
ciples, is a radical alternative (with high-impact potential) to all the exist-
ing programs, and is based on some very solid mathematics (uniqueness
and existence of the two key equations in the conformal approach: the
Lichnerowicz–York equation and the lapse-fixing equation).
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5 The Topics for Research

The relational program has consistently led to unexpected developments
and I fully expect more topics for research to emerge as work progresses. At
the moment, I plan four specific topics for research with the theoreticians
mentioned already and below. Because their positions during the grant
period are not yet known, I am not including them as formal co-investigators
but do expect to be working with them. I may also mention that these
topics are more precise than those listed for my 2008–2010 grant project
(Machian Quantum Gravity) and emerged just as I had hoped from the
mini-workshops and one-on-one interactions funded by it.

1. How Many Relational Theories Exist on Conformal Super-

space? One of the issues that I am currently researching with Henrique
Gomes (Nottingham University) and Sean Gryb (Perimeter Institute) and
will continue in the period for the grant beginning January 2011 is that
of how many theories exist on conformal superspace which meet the above
‘point-and-tangent-vector’ requirement. It has already been established that
general relativity is such a theory. In principle, this was already shown in
[4], but the recent research with Ó Murchadha has significantly clarified the
derivation and made it more precise. However, general relativity is probably
a special theory among a class of such theories, and it would be desirable
to have an overview of the complete class. This will make it possible to
understand better how general relativity can simultaneously have two such
different interpretations (spacetime and relational) and is likely to be im-
portant in quantum gravity.

2. The Inclusion of Matter. The results so far described have all
been for vacuum general relativity. An important topic for research will
be to extend the conformal theory to include the matter fields, or at least
those that are known to exist in nature. Because York’s conformal method
for solving the initial-value problem in general relativity was successfully
extended to include matter already in the 1970s, it seems very likely that
matter can be accommodated within the variational relational framework
(which provides a first-principles derivation of York’s method [4]). However,
the details need to be worked out.

3. The Deep Dynamical Structure of General Relativity. Men-
tion was made above of the very solid mathematics associated with York’s
conformal work. It is already evident that this is intimately related to the
presence of the local square root in the BSW action, which in turn is what
makes it possible to ‘swap foliation invariance for three-dimensional confor-
mal invariance’. Work on understanding this in depth and relating it to
Dirac’s theory of constrained Hamiltonian systems, which is important for
quantum gravity, has already begun with Ó Murchadha, Gomes, Gryb, and
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Tim Koslowski (Perimeter Institute). This work too I plan to continue in
the period of the grant. It promises to give real insight into the structure
of general relativity as a dynamical relational theory resting on a few key
axioms.

4. The Relational Foundation of Gauge Theory. All this work
belongs in the larger perspective of dynamical theories that are best rep-
resented in terms of fibre bundles in which the base space is a quotient
configuration space obtained by quotienting with respect to a fundamental
structure group. Without my realizing it, this structure was already implicit
in my first paper [9]. I made the fibre-bundle picture the central theme in
my Dennis Sciama Memorial Lecture (“Mach’s principle as the universal ba-
sis of dynamics”) given in Oxford and Trieste in November 2009. I pointed
out that the relational perspective creates a deep unifying framework for
(and explanation of) all gauge-type theories. Moreover, in conformal ge-
ometrodynamics the relational approach shows how gauge theory can be
generalized in a highly nontrivial way using the variational procedure that
Ó Murchadha introduced. I plan to make a significant part of my research
to be the elaboration of the details in collaboration with Ó Murchadha,
Gomes, Gryb, and Koslowski.

6 Outline of Proposed Book

I plan to devote half of the time of grant period to the writing of a book
(provisional title: The Principles of Relational Dynamics). As I mentioned
in the Introduction, it will be less historical and much more concerned with
cutting edge research than its precursor [7], reprinted as [16]. I feel that
my lifetime’s work on the Machian approach has uniquely equipped me to
contribute to clarifying many conceptual issues that are often very poorly
understood. These include such basic issues as how to define inertial sys-
tems, clocks and duration. They are crucial to understanding the true re-
lational nature of general relativity. In fact, the book will be a complete
relational reworking of dynamics that frees it from all vestiges of the ab-
solute structures that hinder the creation of quantum gravity. The earlier
part of this proposal will have given a good idea of the subject matter of the
book and its potential significance, so I here merely list some of the topics
to be included:

Newton’s reason’s for introducing absolute space and time. The early criti-
cism by Leibniz. Mach’s critique. Poincaré’s precise formulation of what a
relational theory should achieve. The data and method needed to determine
inertial frames of reference. The variational framework needed for relational
dynamics: quotient configuration spaces and fibre bundles. Timless formu-
lation of dynamics using Jacobi’s principle and generalizations of it. The
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theory of time and clocks in particle dynamics. Scale invariance in particle
dynamics. Early Machian theories. Best matching: the intuitive idea and
the formal theory. Best matching in particle dynamics. General covariance
and background independence. Noether’s theorem and Dirac’s generalized
Hamiltonian theory. Maxwellian electrodynamics as treated by Dirac and
as a best-matched relational theory. Relational geometrodynamics based
on Riemannian geometry: the relational derivation of general relativity,
then special relativity, and then gauge theory. Relational geometrodynam-
ics based on conformal geometry. Implications of the relational structure of
classical general relativity for quantum gravity.
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